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ABSTRACT Temperature, pH, and hydrochemistry of terrestrial hot springs play a critical 
role in shaping thermal microbial communities. However, the interactions of biotic and 
abiotic factors at this terrestrial-aquatic interface are still not well understood on a 
global scale, and the question of how underground events influence microbial commun
ities remains open. To answer this, 11 new samples obtained from the El Tatio geother
mal field were analyzed by 16S rRNA amplicon sequencing (V4 region), along with 
191 samples from previous publications obtained from the Taupo Volcanic Zone, the 
Yellowstone Plateau Volcanic Field, and the Eastern Tibetan Plateau, with their temper
ature, pH, and major ion concentration. Microbial alpha diversity was lower in acid-sul
fate waters, and no significant correlations were found with temperature. However, 
moderate correlations were observed between chemical parameters such as pH (mostly 
constrained to temperatures below 70°C), SO4

2− and abundances of members of the 
phyla Armatimonadota, Deinococcota, Chloroflexota, Campilobacterota, and Thermo
plasmatota. pH and SO4

2− gradients were explained by phase separation of sulfur-rich 
hydrothermal fluids and oxidation of reduced sulfur in the steam phase, which were 
identified as key processes shaping these communities. Ordination and permutational 
analysis of variance showed that temperature, pH, and major element hydrochemistry 
explain only 24% of the microbial community structure. Therefore, most of the variance 
remained unexplained, suggesting that other environmental or biotic factors are also 
involved and highlighting the environmental complexity of the ecosystem and its great 
potential to test niche theory ecological associated questions.

IMPORTANCE This is the first approach to investigate whether geothermal processes 
could have an influence on the ecology of thermal microbial communities on a global 
scale. In addition to temperature and pH, microbial communities are structured by 
sulfate concentrations, which depends on the tectono-magmatic settings (such as the 
depth of magmatic chambers) and the local settings (such as the availability of a 
confining layer separating NaCl waters from steam after phase separation) and the 
possibility of mixing with more diluted fluids. Comparison of microbial communities 
from different geothermal areas by homogeneous sequence processing showed that 
no significant geographic distance decay was detected on the microbial communities 
according to Bray-Curtis, Jaccard, unweighted, and weighted Unifrac similarity/dissimilar
ity indices. Instead, an ancient potential divergence in the same taxonomic groups is 
suggested between globally distant thermal zones.

KEYWORDS 16S rRNA gene, geothermal field, alpha and beta diversity, thermal water, 
co-occurrence networking

G eothermal regions are globally distributed in zones of elevated crustal heat flow, 
preferentially concentrated in areas of active magmatism and/or crustal thinning 

(1, 2). Crustal heat transfer is locally enhanced by circulating water, which can reach 
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the surface and form geothermal features. The chemistry of these waters represents an 
opportunity to explore the processes that occur before the fluids reach the surface. 
These fluids form primarily from meteoric water and/or seawater (3, 4) that is heated in 
the upper first few kilometers of the Earth’s crust. Aquifer fluids may undergo composi
tional changes by depressurization boiling, phase separation, mixing, precipitation, or 
dissolution of minerals or by contributions of magmatic fluids (3, 5–7).

According to pH and major ion concentrations, hot springs are usually classified 
into (i) NaCl waters, (ii) acid-sulfate waters, and (iii) HCO3 or CO2-rich waters (3, 6–12). 
NaCl waters are distinguished by their near-neutral pH and high concentrations of Cl−. 
In contrast, acid-sulfate waters are characterized by high concentrations of SO4

2− and 
low pH values. The acidity is caused by contributions of HCl and SO2 derived from 
magmatic/volcanic sources or by the joint action of phase separation and mixing of 
geothermal fluids (9, 13). In the latter, reservoir fluids boil during ascent and separate 
into an H2S-CO2-rich steam phase and a liquid-saline phase. The steam phase rises 
and mixes with shallow or surface groundwater, and the available H2S is oxidized to 
form SO4

2−. According to geothermal reservoirs conceptual models (2), the third type of 
water consists of neutral to alkaline pH bicarbonate-rich waters, preferentially located 
at the periphery of geothermal systems. These waters may originate from the boiling 
of a CO2-rich geothermal fluid, followed by condensation of the steam phase and fluid 
interaction with the surrounding rocks.

These aqueous environments provided by hydrothermal activity are colonized by 
microorganisms that take advantage of specific local hydrochemistry through various 
metabolic pathways (14, 15). Complex interactions between the local environmental 
conditions of the hot springs and their microbial communities have been previously 
described. It has been suggested that temperature would be the factor that modu
lates the microbial communities inhabiting hot springs in the Tibetan Plateau (16–18) 
and Malaysia (19). In contrast, pH has been found to be the most critical parameter 
structuring microbial life in the Taupo Volcanic Zone (20), and its contribution along 
with temperature has been shown to strongly influence microbial beta diversity in hot 
springs in Yellowstone National Park (21) and Costa Rica (22). In addition to these factors, 
other chemical parameters such as total and dissolved organic carbon, redox potential, 
dissolved sulfide, and elemental sulfur have also been shown to impact specific taxa in 
thermal communities (18, 23).

However, on a global scale, much less has been studied overall on how thermal 
microbial communities are structured. Novel and previous data obtained for geother
mal areas in Argentina and Malaysia, New Zealand, India, China, Russia, and USA 
were analyzed together, and no significant effect of temperature and pH on microbial 
communities was demonstrated, possibly explained by the effect of other multiple 
factors involved (24). Among these other factors, the hydrochemistry of thermal features 
has been suggested to influence the community due to varied physicochemical drivers 
(25, 26), leading to the question of how geothermal processes such as water-rock 
interactions, boiling, or water mixing affect microbial communities in terrestrial hot 
spring environments. Seeking to answer this question, chemosynthetic hot spring 
communities in Yellowstone National Park have been studied, from which it has been 
proposed that water acidification generated by phase separation controls the availability 
of nutrients, which influences the microbial ecology of thermophilic communities (27). It 
has also been proposed that subsurface and near-surface water mixing plays a key role 
in promoting chemosynthetic biodiversity in geothermal systems (28). Similarly, Guo et 
al. (16) investigated the role of hydrogeochemical processes on the microbial ecology 
of hot springs in Yunnan Province (China). The authors proposed that shallow circula
tion and sulfur oxidation accounted for the hydrochemistry of moderate-temperature 
acidic springs while high-temperature alkaline springs hydrochemistry was the result of 
deeper fluid circulation. This distinction was recognized as the main contributor to the 
environmental variations modulating microbial communities in Yunnan.
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In the present study, we investigated the influence of hydrothermal processes on 
the microbial communities inhabiting hot springs at four emblematic geothermal sites 
worldwide. We carried out this identification by comparing the hydrochemistry and 
respective microbial communities of 152 hot springs from the Taupo Volcanic Zone (TVZ; 
New Zealand), 25 from the Yellowstone Plateau Volcanic Field (YPVF; USA), 11 from the 
Altiplano-Puna Volcanic Complex (APVC; Chile), and 14 from the Eastern Tibetan Plateau 
Geothermal Belt (ETPGB; China).

RESULTS AND DISCUSSION

Study zones

Taupo Volcanic Zone

The Taupo Volcanic Zone (TVZ) (Fig. 1A) is an active zone of calc-alkaline volcanism and 
intra-arc rifting derived from westward subduction of the Pacific Plate beneath the North 
Island (29), with voluminous rhyolitic volcanism active since 1.6 Ma ago (30). Rhyolitic 
pyroclasts and lava flow, mainly discharged by caldera-type volcanoes, and Quaternary 
sediments cover the area (31). Structures are NNE-trending faults that extended from Mt. 

FIG 1 Location of the analyzed hot springs. (A) Taupo Volcanic Zone (TVZ), (B) Yellowstone Plateau Volcanic Field, (C) El Tatio at the Altiplano-Puna Volcanic 

Complex, and (D) Eastern Tibetan Plateau Geothermal Belt. Map elaborated with Esri “World Countries Generalized” basemap. Scale not given. 8 June 2023. 

https://hub.arcgis.com/datasets/esri::world-countries-generalized/explore (accessed 17 August 2023).
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Ruapehu to the Bay of Plenty with a 15- to 20-km-wide rift zone, known as Taupo Fault 
Belt or Taupo Rift (32).

The geothermal heat flux is released mainly in its central part by 23 high-temperature 
(>250°C) geothermal fields (33) with fluid chemistry greatly varying between and within 
geothermal systems. Deep geothermal fluids, which reach over 300°C (34), consist of 
water, carbon dioxide, and chloride as their most important components (35). This water 
is predominantly of meteoric origin with proportions of magmatic inputs.

Yellowstone Plateau Volcanic Field

The YPVF (Fig. 1B), located in Yellowstone National Park (USA), has been formed over the 
past 2.1 Ma due to intraplate hotspot activity. Three cataclysmic volcanic eruptions have 
been reported in that period (36) producing mainly rhyolitic lava flows, sequences of 
ash-flow tuffs, and basaltic lava flows without intermediate-composition rocks (37). The 
latter event, dated to 0.64 Ma, gave rise to the Yellowstone Caldera (36).

The YPVF hosts the largest geothermal region in the world, which comprises more 
than 10,000 features, including thermal pools, mud pots, fumaroles, and frying pan 
(38). Its surficial manifestations are found primarily within or near to the margin 
of the Yellowstone Caldera or along north-south-trending faults outside the caldera 
(39). Geothermal manifestations vary in gas and water composition, having pH values 
between 1.5 and 10. From hot springs’ hydrochemical analyses, deep fluids are known to 
reach 340°C to 370°C, which ascend through successively shallower and colder reservoirs 
(40) where changes in physicochemical conditions lead to water-gas-rock chemical 
reactions (41). Mixing water has been also described to produce intermediate-composi
tion manifestations (9, 42).

El Tatio (at Altiplano-Puna Volcanic Complex)

The Andes is an orogenic belt formed due to the subduction of the oceanic Nazca plate 
under the continental upper South America plate. The APVC, located in the Central 
Volcanic Zone of the Andes, is one of the largest silicic volcanic fields in the world (43), 
formed since the Miocene (44). Quaternary volcanism, active fractures, and fault systems 
in this zone have given the natural conditions to develop high-temperature geothermal 
systems (45, 46), such as El Tatio.

El Tatio (Fig. 1C) is located over 4,200 meters above sea level, where extreme 
atmospheric conditions are due to low precipitation and high evaporation rates, high 
daily temperature oscillations (47), and high rates of ultraviolet radiation (48). The 
geothermal area encloses about 200 thermal features including geysers, fumaroles, hot 
springs, and mud volcanoes (49, 50) and extensive sinter deposits. The temperature 
of the thermal fluids can reach 86°C at the surface, which is the boiling point at this 
altitude, while the pH ranges from 5.5 to 8.2. Conceptual implications of the system 
have been deduced: meteoric water recharge at higher altitudes, ~15 to 20 km east of 
El Tatio (51). Two local reservoirs, one deeper and hotter (260–270°C) and one shallower 
and cooler (160–170°C), accumulate hot fluids and feed thermal features. In addition, 
a larger-scale model has been proposed (50), which integrates El Tatio into a regional 
geothermal system that also comprises La Torta dome 10 km southeast of El Tatio. In this 
model, a third hotter reservoir is proposed below La Torta dome, from which fluids flow 
sub-horizontally across NW-striking faults and rise at the intersection between the N- and 
NW-striking faults found in El Tatio (Fig. 1C).

Eastern Tibetan Plateau Geothermal Belt

The Tibetan-Himalayan Plateau has been formed by the collision between the Indian 
and Eurasian tectonic plates since the early Cenozoic (52). The Tibetan Plateau is the 
largest plateau on Earth (53) and is composed of tectonic terranes accreted to the 
southern margin of Asia throughout the Phanerozoic (54). In its eastern region, ~4,000 m 
above sea level is located the Songpan-Ganzi complex, a triangular fold belt containing 
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multiple lithospheric-scale strike-slip and thrust fault zones (55). This area is covered by 
granitic rocks, and it is bounded to the west by the Yidun arc across the Ganzi Suture (56).

In the ETPGB (Fig. 1D), about 250 thermal manifestations are distributed in three 
geothermal belts, each spatially related to a fault system (57). From west to east, (i) 
the Dege-Batang-Xiangcheng geothermal belt is related to the Dege-Xiangcheng fault 
system; (ii) the Ganzi-Xinlong-Litang geothermal belt ,to the Ganzi-Litang fault zone; and 
(iii) the Luhuo-Daofu-Kangding geothermal belt, to the Xianshuihe fault zone (58). It is 
believed that reservoir fluid upwelling is favored by the permeability given by these 
fault systems (57). Tang et al. (55, 56) proposed two types of geothermal systems. The 
Kangding type is characterized by a mantle-derived heat source from the radioactive 
decay of Cenozoic granite. The main reservoirs are granitic intrusive bodies and Triassic 
sandstones. On the other hand, the Batang-type systems have a crust-derived heat 
source that heats Mesozoic intrusive bodies. In both types of system, the recharge has a 
meteoric origin.

According to the criteria applied in the literature search, nine geothermal fields in 
the TVZ were included in this study. From south to north, these fields were Tokaanu, 
Wairakei-Tahura, Orakei-Korako, Waikite, Waiotapu, Waimangu, Roturua, Tikitere, and 
Whakaari (White Island) (Fig. 1A). Likewise, the fields included in the ETPGB were Batang 
and Kanding (Fig. 1D), the one included in the APVC was El Tatio (Fig. 1C), and the 
YPVF geothermal system, which is called Yellowstone thereafter (Fig. 1B). The four study 
zones are placed in different tectonic settings, which have fundamental implications for 
the characteristics of their geothermal systems. Some of them are their thermal regime, 
heat flow, hydrogeologic regime, fluid dynamics, faults and fractures, stress regime, and 
lithological sequences. All these properties also influence their fluid chemistry as well as 
local conditions (2). This permits the detection of thermal manifestations of very different 
compositions in the same geothermal field and, at the same time, surface manifestations 
of different geothermal fields with similar chemical compositions.

Hot spring hydrochemistry

Physicochemical parameters and major ion concentrations of the analyzed hot springs 
covered a broad hydrochemical spectrum (Table S1), which opened the possibility of 
analyzing microbial communities in different hydrochemical scenarios. Temperatures 
ranged between 31.5°C and 99°C, pH between 1.5 and 9.9, and electrical conductivity 
between 236 and 21,000 μS/cm (Fig. 2A through C). Ionic concentrations varied as much 
as 5 orders of magnitude, such as Cl−, which ranged from 0.05 mg/L to 7,061 mg/L. 
SO4

2− concentrations ranged from 1.6 mg/L to 2,418 mg/L, and HCO3
− values ranged 

from 0 to 1,228 mg/L. As for cationic concentrations, Na+ values reported the broadest 
range among the samples ranging from 1.7 mg/L and 4,580 mg/L, followed by K+ with 
concentrations between 1.6 mg/L and 508 mg/L. Ca2+ and Mg2+ values ranged from 0.36 
mg/L to 381 mg/L and from 0 to 173 mg/L, respectively, and Si concentrations ranged 
from 14.06 mg/L to 368 mg/L. Zonal dependence was observed for the hydrochemical 
ranges, with greater homogeneity in El Tatio and ETPGB samples than in YPVF and TVZ, 
although ETPGB samples covered a wide temperature range, between 37.4°C and 88.2°C.

Samples were plotted on a Piper diagram (59; Fig. 2D) according to their major ion 
concentration. Cl− was the dominant anion in 71% of the samples, and Na+ was the 
dominant cation in 92%, meaning that most of the waters were classified as Na-Cl type. 
Looking at the scale of the study zone, it was noticed that waters in the APVC were all 
Na-Cl type, while in the ETPGB, there were only HCO3-type waters. Furthermore, most 
of the Na-HCO3 and Ca-HCO3 samples in the data set belonged to the ETPGB. As for 
the YPVF and the TVZ samples, they comprised Na-Cl and Na-SO4 waters and a reduced 
number of Na-HCO3.

NaCl waters

From the 202 analyzed hot spring samples, 107 were classified as NaCl waters (Fig. 3). 
Cl− concentrations at El Tatio were the highest of all samples, reaching 7,062 mg/L, 
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while Tokaanu’s Cl− concentrations reached 3,234 mg/L, being the highest in the TVZ. 
High salinities in Tokaanu have been interpreted as a cause of steam loss and surface 
evaporation processes (60–62). Also, both processes have been described as two of the 
most important secondary events at El Tatio (47, 51), which probably also contribute to 
concentrate the Cl− and many other compounds in the rising water. In contrast, NaCl 
waters from Wairakei-Tauhara, Waimangu, Rotorua, Orakei-Korako, and Yellowstone had 
Cl− concentrations below 1,314 mg/L and higher ratios of HCO3

− to Cl− and SO4
2− to Cl−, 

which may suggest that other secondary processes are controlling their major element 
chemistry.

Acid-sulfate waters

Of the 60 acid-sulfate water samples (Fig. 3), 3 of them were taken at the active White 
Island volcano. The three analyzed samples had pH values between 3.05 and 5.41, and 
SO4

2− concentrations, between 804 and 1,969 mg/L. Fluid sources identified include 
meteoric water, seawater, and magmatic steam (63–65). The latter has been shown to 
contribute sulfur more as SO2 and less as H2S (63), and these inputs are responsible for 
the low pH values reported (66).

FIG 2 Distribution of temperature (A), pH (B), and electrical conductivity (C) of the samples at each study zone. (D) Piper diagram of the analyzed samples by 

study zone.
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The remaining 57 samples belonged to Yellowstone, Waiotapu, Wairakei-Tauhara, and 
Tikitere, and their acidity has previously been interpreted as the result of S-rich fluid 
phase separation and condensation of the steam phase followed, in many cases, by 
mixing with shallower water (9, 67–70). In addition, Nordstrom et al. (9) deduced many 
mixing processes in the YPVF that can explain the SO4

2− and Cl− concentrations in the 
analyzed waters (Fig. S1).

Hydrochemical trends were observed at Tikitere and Waiotapu, where samples 
displayed between the SO4

2− and HCO3
− vertex of the ternary diagram in Tikitere and 

the SO4
2− and Cl− vertex in Waiotapu (Fig. 3). These samples exhibited pH values of 1.57 

to 6.48 and 2.31 to 5.55, respectively. Lower pH values were observed to be correlated 
with higher Eh values (Fig. S2), leading to relate acidity to shallower fluid circulation. High 
concentrations of sulfate in these acidic samples also contribute to consider oxidation of 
reduced S as an important mechanism of acidity. More information on water chemistry 
would be needed to evaluate the role of water-rock interactions in the formation of these 
acid-sulfate waters.

HCO3
− or CO2-rich waters

For Batang, Kangding, Waikite, Waimangu, Tikitere, Wairakei-Tauhara, and Yellowstone, 
35 samples were classified as HCO3

− or CO2-rich water. The highest HCO3
− concentrations 

were found in the ETPGB (412 mg/L > HCO3
− > 1,228 mg/L). Ratios of Na+ to Cl− in these 

samples were above unity, suggesting that Na+ originated from the dissolution of silicate 
minerals (71).

In the TVZ, Waikite bicarbonate waters have been interpreted as peripheral waters, 
being an outflow from the Waiotapu geothermal field (67, 72). In that case, bicarbonate 
may have originated from the interaction of CO2 with the surrounding rocks. This same 
origin is believed to have the bicarbonate-rich waters of Wairakei-Tauhara.

FIG 3 Ternary SO4-Cl-HCO3 diagrams for each geothermal field. Samples are represented according to the geothermal area and water type.
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Microbial communities

The 16S rRNA gene is a universal genetic marker for Bacteria and Archaea that allows 
us to compare the microbial structure of the communities between hot springs and 
analyze the biological response against the metadata of interest. Standardized sequence 
processing was performed on the 11 samples from El Tatio and the 191 pre-existing 
samples in the National Center for Biotechnology Information (NCBI) Sequence Read 
Archive (SRA) database from the other three study zones. A total of 7,505,257 clean 
sequences were recovered from the common V4 region of the 16S rRNA gene across the 
202 hot spring samples. These sequences represented 950 archaea and 16,398 bacteria 
amplicon sequence variants (ASVs). Among the clean sequences, 6,348,970 belonged to 
the TVZ (median = 26,467), 843,032 to the YPVF (median = 32,110), 360,291 to the ETPGB 
(median = 26,041), and 256,760 to the APVC (median = 24,063; Table 1).

Alpha and beta diversity

Rarefaction curves analysis showed that ASV saturation was reached beyond 15,000 
reads per sample (Fig. S3). Analysis of microbial community diversity in each hot spring 
showed a wide range of observed richness between 9 and 904 ASVs, while the Shannon 
index ranged from 0.14 to 5.6 (Table S2). Diversity values were calculated by habitat 
(water or mat), study zone (4), and geothermal field (13). No statistically significant 
differences in observed richness (P > 0.05) were found grouping by habitat or study 
zone. However, the Shannon index showed significantly (P < 0.05) lower diversity in 
water communities (2.60 in the ETPGB and 2.77 in the TVZ) compared to microbial mat 
communities (3.24 in El Tatio and 3.54 in the YPVF, Fig. S4). In contrast, when looking at 
the scale of the geothermal field, a greater contrast was observed in both metrics. The 
highest Shannon indexes (3.5–3.9) were found at Wairakei-Tahura (TVZ), Waikite (TVZ), 
and Yellowstone (YPVF), which also had the highest observed richness along with Batang 
(ETPGB) and Waimangu (TVZ; 118–200). In contrast, the least diverse communities were 
found at Tikitere (TVZ), Waiotapu (TVZ), and White Island (TVZ; 1.3–2.3; 23–42).

To further analyze the influence of water chemistry on alpha diversity, correlations 
between chemical parameters and diversity indexes were calculated for each study 
zone (Fig. S5). No statistically significant correlations were found between temperature 
and alpha diversity in any study zone, which supports the findings of Hamilton et al. 
(73) and Power et al. (20) but contrasts with two previous intercontinental studies that 
correlated hot spring temperature with alpha diversity (74, 75). On the other hand, 
observed richness and Shannon index correlated with pH (R = 0.49, 0.3; P < 0.05) and 
SO4

2− concentrations (R = −0.51, –0.34; P < 0.05) in the TVZ microbial communities, which 
was already detected by Power et al. (20). The authors also showed that this effect of pH 
on alpha diversity was constrained to specific temperature ranges. Thus, samples from 

TABLE 1 Number of 16S rRNA amplicon sequences from each set of samples before and after filtering

Source Country Study zone Samples Geothermal systems
Total 
sequences

Filtered 
sequences

Median filtered 
sequences

Power et al. (20) New Zealand Taupo Volcanic Zone 152 Rotorua (RO), Orakei Koraro 
(OK), Tokaanu (TK), Tikitere 
(TT), Waiotapu (WP), 
Waimangu (WG) Waikite 
(WK), Wairakei-Tahura (WT), 
White Island (WI)

9,254,997 6,348,970 26,467

Hamilton et al. (73) USA Yellowstone Plateau 
Volcanic Field

25 Yellowstone (YE) 1,187,293 843,032 32,110

Guo et al. (16) China Eastern Tibetan Plateau 
Geothermal Belt

14 Batang (BT), Kangding (KD) 427,442 360,291 26,041

This paper Chile Altiplano Puna Volcanic 
Complex

11 El Tatio (TT) 389,044 256,760 24,063
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all zones were grouped by temperature, which showed that the correlation between 
pH and alpha diversity was limited to temperatures below 70°C (Fig. S6). This led to 
the establishment that acid-sulfate waters have lower diversity indexes compared to 
bicarbonate and NaCl water at temperatures below 70°C (Fig. 4).

To analyze the variation in species composition among different hot springs, 
geothermal fields, and zones, an ordinate analysis was performed on the weighted 
Unifrac Beta diversity index. Axis 1 (36.3%) and Axis 2 (14.1%) generated with the 
multidimensional metric scaling (MDS) analysis explained a total of 50.53% of the 
variance (Fig. 5). The results did not show a clear distribution of the samples according to 
their study zone in the ETPGB and TVZ microbial communities. On the contrary, samples 
from El Tatio showed small phylogenetic distances with most of the YPVF samples.

Multiple variables as conditioning factors of thermal microbial taxonomic 
composition

Microbial communities in the TVZ and the ETPGB were mainly composed of Aquificota 
and Proteobacteria phyla, comprising 55% and 56% of their abundance, respectively 
(Fig. S7A). More specifically, the dominant families in the TVZ were Aquificaceae, 
Hydrogenothermaceae, and Hydrogenobaculaceae (Fig. S7B). The two former Aquificota 
families also dominated in the ETPGB along with the Thermaceae and Comamonadaceae 
families. In contrast, the El Tatio communities were mainly composed of the phyla 
Chloroflexota, Bacteroidota, and Cyanobacteria, covering 62% of its relative abundance. 
The dominant families in this field were Chloroflexaceae, an uncultured member of 
Armatimonadota, Roseiflexaceae, and Nostocaceae. At El Tatio, a previous study showed 
that Chloroflexota accounts for the majority of microbial mat and sediment sequences 
between 38°C and 54°C, whereas Deinococcota dominated at higher temperatures (76). 
Similarly, Chloroflexota, Bacteroidota, and Cyanobacteria, together with Proteobacteria, 
comprised 55% of the relative abundance of YPVF communities. The dominant families 
in the YPVF were Leptococcaceae, Roseiflexaceae, and Thermaceae.

Since temperature and pH have traditionally been considered to have a strong 
influence on shaping microbial community structures in hot springs, this correlation was 
tested with the MDS axes in the different samples. The results showed that temperature 

FIG 4 Shannon index for microbial communities inhabiting acid-sulfate, bicarbonate, and chloride 

waters at temperature below 70°C.
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correlated moderately with Axis 1 (R2 = 0.36, P < 0.05), and pH, with Axis 2 (R2 = 0.34, P < 
0.05) (Fig. 5A and B). Therefore, it is suggested that the structure of the analyzed samples 
was partially influenced by temperature and pH gradients. No ordering by water type 
was observed in the distribution of microbial communities, except for communities of 
the YPVF acid-sulfate waters that were preferentially distributed along Axis 2.

To further assess potential drivers of community composition, temperature, pH, and 
major ion concentrations were subjected to principal component analysis (PCA) (Fig. 
S8). The resulting principal components, together with observed richness and microbial 
community habitat (water or mat), were used as explanatory variables in a permuta
tional analysis of variance (PERMANOVA). Results showed small contributions from each 
variable, rather than a single principal explainer (Table 2). The highest linear correlation 
of the hydrochemical factors was 8.3% given by PCA principal component 4 (PC4), which 
was highly related to temperature and Mg2+ and Si concentrations (P < 0.001). PC2, 
mostly associated with pH, SO4

2−, and Mg2+, as well as PC3 associated with HCO3
− and 

Si also showed a significant influence on beta diversity, each explaining less than 5% 

FIG 5 Axis 1 and Axis 2 resulted from the MDS analysis performed on the weighted Unifrac distances between microbial communities. (Bottom) Correlation of 

Axis 1 with temperature. (Right) Correlation of Axis 2 with pH.
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of the total variance (R2 = 0.045, P < 0.001). Microbial community habitat contributed 
to explaining 3.8%, while observed richness explained 2.1%. Hence, 63.19% of the 
variance remained unexplained, suggesting other environmental variables involved in 
structuring these communities, such as humidity, solar radiation (48), or other hydro
chemical variables not considered in the present study. In the literature, it has been 
suggested that microbial community variance is better constrained with hydrochemistry 
where photosynthesis is absent (23, 77), which is consistent with PERMANOVA results at 
temperatures over 75°C (Table S3). In these cases, the concentrations of dissolved species 
regulate the metabolic pathways that microorganisms can resort to (77). On the other 
hand, the influence of the biological component, such as the interaction between taxa, 
could also play a role in shaping these thermal communities.

Furthermore, when assessing the effect of hydrochemical gradients on dominant taxa 
(>0.1%), only weak to moderate correlations (Ρ = 0.2 to 0.7; P < 0.05) were identified 
with the relative abundances of these taxa (Fig. 6). Chloroflexota, Bacteroidota, and 
Cyanobacteria, the most abundant phyla of the YPVF and the APVC, were moderately 
positively correlated with pH and moderately negatively correlated with SO4

2−. These 
correlations confirm the circumneutral to alkaline pH at which members of Chloroflexota 
and Cyanobacteria grow optimally in terrestrial hot springs, forming phototrophic mats 
(e.g., 22, 75, 77–80).

Chloroflexaceae family showed the highest correlation with pH (Fig. S9), as reported 
for the genus Chloroflexus (73). However, the highest correlation of pH and SO4

2− was 
observed for members of the family Thermaceae (Deinococcota) and a family with 
uncultured members of Armatimonadota. Power et al. (20) and Hamilton et al. (73) 
previously recognize this positive correlation between pH and the Thermus genus of 
the Thermaceae family in YPVF and TVZ, respectively. Similarly, thermophilic members 
of Armatimonadota have only been found at neutral or alkaline pH (81). In contrast, 
the abundances of Thermoplasmatota and Campilobacterota increased with SO4

2− and 
decreased with pH, as observed for Desulfurellaceae and a family with uncultured 
members of the phylum Thermoplasmatota. The family Acidithiobacillaceae (Proteo
bacteria) was similarly related to the above parameters, being the only family of 
Proteobacteria correlated with temperature, which are preferentially present at lower 
temperatures. This family and, in particular, its best-known genus, Acidithiobacillus, have 
been extensively reported in acidic terrestrial hot springs and acid mine drainages (e.g., 
82, 83, 84 ).

Members of Aquificota, a dominant phylum in ETPGB, were correlated with different 
chemical parameters. Aquificaceae were preferentially distributed at high temperature, 

TABLE 2 PERMANOVA results using as explanatory variables observed richness, habitat (water/microbial 
mat), and the principal components of the PCA constructed with hydrochemical variablesa

R2 F-model Pr(>F)

Observed richness 0.0212 6.37 P < 0.001
Habitat 0.0376 11.26 P < 0.001
PC1 0.0211 6.32 P < 0.01
PC2 0.0453 13.56 P < 0.001
PC3 0.0449 13.44 P < 0.001
PC4 0.0834 24.95 P < 0.001
PC5 0.0205 6.13 P < 0.001
PC6 0.0103 3.10 P < 0.01
PC7 0.0090 2.71 P < 0.05
PC8 0.0051 1.55 P > 0.1
PC9 0.0099 2.95 P < 0.05
PC10 0.0032 0.97 P > 0.1
Residual 0.6320 -
Total 0.944 -
aDistances were based on weighted Unifrac metric. Pr(>F), p-value associated with the F statistic.
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as previously reported for the genus Aquificae on the Tibetan Plateau, Yellowstone, and 
Iceland (18, 74, 79). Members of Hydrogenobaculaceae were not affected by temperature 
but were negatively correlated with pH and HCO3 and positively correlated with SO4

2−. 
The genus Hydrogenobaculum has been isolated from sites with pH values between 1.02 
and 5.75 and high concentrations of H2, H2S and CO2 (85). Members of this genus have 
been found to grow on these chemical species and use them together with thiosulfate 
as energy sources (85), illustrating their dependence on hot spring chemistry (Fig. 
S9). In addition, Hydrothermae and Bathyarchaeia (Ca. Bathyarchaeota) also showed a 
moderately positive correlation with temperature.

Weaker correlations were found between pH, SO4
2−, temperature, Cl−, Na+, Ca2+, and 

Mg2+ and some other taxa (Ρ < 0.4; P < 0.05). This again suggests that the action of 
environmental conditions on microbial communities in thermal environments is not 
limited to the individual effects of one or a couple of parameters but to a set of complex 
interactions between biotic and abiotic elements, as described by niche theory (86).

In that sense, many interactions between microorganisms forming photoautotrophic 
mats have already been described (78, 87, 88). In the present study, we further analyzed 
biotic interactions among those phyla that were more correlated with water chemistry 
and performed microbial co-occurrence networks by geothermal zone (Fig. 7). This 
analysis showed higher modularity and lower betweenness in El Tatio and ETPGB than 
in YPVF and TVZ. These differences can probably be explained by the difference in the 

FIG 6 Highest Spearman correlations (Ρ > 0.3; P > 0.01) between phylum abundance and hydrochemical variables. Sequences were previously filtered by relative 

abundance (<0.1%).
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number of samples analyzed for each zone, which allowed more significant connections 
in the latter two. In addition, as inferred from their correlations between chemical factors, 
positive connections were found between some phyla that are affected by the same 
environmental factors. This was observed in the Armatimonadota and Chloroflexota 
nodes and in the Cyanobacteria, Chloroflexota, and Bacteroidota nodes, which correlated 
similarly with pH and SO4

2−.

Role of geothermal processes on chemistry and microbial communities

PERMANOVA results indicated that the eigenvectors PC4 (temperature, Mg2+, and Si) and 
PC2 (pH, SO4

2−, and Mg2+) were the most important explanatory factors of community 
structure. However, Mg2+ and Si concentrations did not show other relevant correlations 
with the community as did temperature, pH, and SO4

2−. In addition, pH and SO4
2− were 

negatively correlated (Fig. S10), which is probably because the main source of acidity 
in geothermal waters is the oxidation of H2S that produces SO4

2− (9). These and other 
correlations between pH and chemical variables (Fig. S10) make it difficult to determine 
what the actual influence of each parameter is on the microbial communities. Moreover, 
many water-rock interaction rates are favored at low pH values, such as the dissolution 
of Ca-bearing minerals (89) that increase the concentration of Ca2+ and Mg2+ in the water. 
This interaction could explain the low to moderate correlations between certain taxa and 
Ca2+ and Mg2+(Fig. 6; Fig. S9).

On the other hand, the availability of reduced sulfur in surface manifestations is 
linked to regional and local conditions that shape the entire geothermal system, such as 
its tectono-magmatic setting, and geological and hydrogeological mechanisms (2). The 

FIG 7 Microbial co-occurrence network of the four study zones. Nodes (ASVs) are colored by phylum. Colored nodes represent those phyla with the highest 

correlations with chemical parameters. Positive connections between nodes are displayed with continuous lines and negative interactions with segmented lines.
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regional conditions that allow the formation of steam-heated water have been evaluated 
by Guo et al. (90) in the Tibetan Plateau. These studies explained the absence of 
acid-sulfate waters in this geothermal zone by (i) the lack of a confining layer separating 
the underlying NaCl waters from steam after phase separation and (ii) the depth of 
magmatic chambers that could play a role in the low H2S concentrations in geothermal 
fluids. Moreover, it has been shown that microbial communities on the Tibetan Plateau 
are modulated by temperature (16–18), which might be explained to some extent by the 
absence of acidic springs. In fact, Guo et al. (16) found and analyzed a thermal spring 
with pH <5 and demonstrated that its microbial community structure differed from the 
rest of hot springs in this geothermal zone.

In addition to the mechanisms proposed by Guo et al. (16), local processes also 
affect the acidity of these steam-heated water, such as the dissolution/precipitation of 
certain minerals or the ratio of shallow water and S-rich steam in the fluid. Hot springs 
fed by concentrated H2S-CO2-rich fluid would have higher SO4

2− concentrations and 
lower pH values than those with a higher shallow component. These local variations 
can be evidenced in Tikitere, where samples showed a wide pH range. As shown in Fig. 
S11, 51.9% of the community structure at Tikitere was explained by Axis 1, which was 
moderately correlated with pH (R2 = 0.48). Thus, the community structure of Tikitere 
responds to the pH gradient. However, no correlation was found between pH, SO4

2− and 
alpha diversity in this geothermal field, which could be attributed to the temperature 
variations experienced by the hot springs (from 44.4°C to 86.8°C), which probably also 
affect the communities. Additionally, deep geothermal fluids may precipitate alunite, 
anhydrite, or pyrite at different depths and decrease their sulfur concentrations, as what 
occurred in Yellowstone (9, 91). This would prevent the formation of acid-sulfate waters 
(9), which could limit the development of acidophile communities.

In contrast to the mentioned processes, no clear influence of Na+, K+, and Cl− 

concentrations was detected on the analyzed microbial communities. Therefore, 
water-rock interactions that incorporate Na+, K+, and Cl− to the water or secondary 
processes that concentrate them do not appear to play a critical role in modeling alpha 
diversity, community structure, or the taxonomy of thermophilic microbial communities, 
but rather, there are other environmental factors that shape these communities, which 
might occur in El Tatio and Tokaanu geothermal fields.

Influence of geographic distance on microbial community’s beta diversity

To evaluate whether geographic distance influences the similarity among microbial 
communities, its effect was determined at three different spatial scales defined as local, 
regional, and global. The local scale includes samples within the same geothermal 
system (< 58 km), while the regional scale defines the maximum distance between 
samples from the same study zone (<279 km). Finally, the global scale comprises 
distances between different study zones (<8,576 km). As there are no data between 
279 km and 8,576 km, this scale was defined as a continental scale.

At the local scale, all beta diversity indexes showed significant (P < 0.01) negative 
relationships with distance (Fig. 8). Jaccard and Bray-Curtis indexes showed weak 
correlations with distance (R2 = 0.11, P < 0.01) but still higher than phylogeny-based 
relationships (R2 <0.01, P < 0.01). At the regional scale, only unweighted Unifrac 
similarities were significant (P < 0.01), but with almost zero correlation with geographic 
distance (R2 = 0.003). Similarly, on a global scale, unweighted and weighted Unifrac 
showed almost absent correlations with geographic distance (R2 = 0.0033, R2 = 0.013, 
P < 0.01). From these results, no distance decay on microbial communities’ similarity 
was inferred based on Jaccard and Bray-Curtis indexes or unweighted and weighted 
Unifrac distances. Thus, it is shown that geography does not explain the change in 
community composition across hydrothermal regions, at least for the four indices tested 
here. However, as the microbial communities tested were taxonomically related on a 
global scale, this might suggest for a potential ancient divergence in the same taxonomic 
groups between globally distant thermal zones, and thus, with the time, some endemic 
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character in each of them appeared as previously reported in the literature for some 
specific taxa (92–96).

Considerations for comparative analyses of geothermal zones

It is worth mentioning that the four different sampling zones and the methodologies 
used in each may present some drawbacks when comparing them, regardless of the fact 
that studies and samples with significant metadata and the same V4 16S rRNA amplified 
region were selected for this study. In situ temperature and pH were measured with 
equipment having different accuracies, which could lead to a bias. Similarly, microbial 
community sampling points varied with respect to where overlying water of the hot 
springs was sampled (which are not even mentioned in some of the studies). As can be 
seen in Table S4, anion and cation quantification methodologies varied between studies. 
Despite this, this fact should not be a limitation for the comparison of major elements, 
which are mostly present in high concentrations compared to the detection limits 
and sensitivity values of the equipment. However, although the sequencing effort was 
normalized by rarefaction analysis, there was a bias of the different primers targeting the 
same region, e.g., 515F and 806R for V4, by different modifications for ambiguous bases 
showing different percentages of potential amplification against the NR SSU silva 138.1 
(from 9.3% to 83.9%). While some phyla showed similar bias with all primer sets (e.g., 
Thermoplasmatota, Aquificota, and Deinococcota), others did not (e.g., Bacteroidota, 
Chloroflexi, and Proteobacteria). The latter showed that the primers used in the present 
study (515F and 926R) currently cover larger number of taxa (83.9%) of the microbial 

FIG 8 Jaccard, Bray-Curtis indexes, and unweighted Unifrac and weighted Unifrac distances of the microbial communities according to their geographic 

distance.
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communities than other primers sets, highlighting that further studies will be necessary 
in the future for the design of better primers (97).

Conclusions

Terrestrial hot springs are a valuable natural resource that host an exceptional biotic 
diversity. This study attempted to compare the microbial diversity and hydrochemistry 
of 202 hot springs from four geothermal areas of the world. The comparison of data 
from different studies revealed multiple biases, mainly associated with the methodolo
gies of analytical chemistry, nucleic acid extraction, and amplification. Despite these 
limitations, statistical analysis showed that 24% of the variance in thermal community 
structure was explained by temperature, pH, and hydrochemistry of major elements. 
This highlights the relevance of these parameters in the microbial ecology of thermo
philic communities and the potential influence of geochemical processes on them. 
At the same time, hydrogeochemistry was consistent with the types of underlying 
geological processes, showing their influence on the assembly of microbial communi
ties. Furthermore, correlations of dominant taxa (such as Chloroflexota, Bacteroidota, 
Cyanobacteria, Deinococcota, Thermoplasmatota, Aquificota, and Armatimonadota) with 
hidrogeochemistry showed that these processes also influence their biotic interaction 
in microbial communities. Meanwhile, these assemblages showed consistency across 
the globe as their microbes appear to diverge early in the same taxonomic groups 
between globally distant thermal zones. Altogether, these results indicate the need to 
develop collaborative and standardized global efforts to better understand the effect 
of hydrochemistry on microbial communities, as well as to continue to conduct local 
studies of geothermal fields located in different areas of the globe, taking into account 
the singularities of each zone and its particular microbial communities.

MATERIALS AND METHODS

El Tatio hot spring sampling and analysis

Water and microbial mat samples were obtained from 11 hot springs of the El Tatio 
geothermal field in January 2020 (Fig. 1C). Temperature and pH were measured in situ 
with a WTW Multi340i multiparameter analyzer (Table S4), with the accuracy of 0.1°C 
and 0.01, respectively. Water from the hot springs was collected in 125-mL polyethylene 
bottles previously rinsed with ultra-pure water and HNO3 for cation measurements. 
Water was filtered through 0.45-µm Millipore membrane filters (Merck; Darmstadt, 
Germany), except the samples for bicarbonate analysis. Samples for cation measure
ments were acidified with HNO3 4 N, and samples for silica quantification were diluted 
to 10%, vol/vol. All samples were stored at 4°C until analysis. Cation concentrations 
were obtained by Flame Atomic Absorption Spectroscopy (Perkin Elmer Pinaacle 900F) 
at the Andean Geothermal Center of Excellence (CEGA) of the Geology Department 
of the University of Chile. Anion quantifications were performed with Ion Chromatog
raphy (Thermo Scientific Dionex ICS-2100), and carbonate speciation was carried out 
by titration with the Giggenbach method (98). Chemical analyses were validated by 
the electroneutrality condition of the solution. The admitted ionic balance was ±5% 
according to the electrical conductivity of the samples (99).

To sample the microbial communities of the mat, approximately 2 mL of the mat 
was recovered in duplicate with a cork borer, 5 to 20 cm away from the water sample 
site. Samples were preserved in cryogenic vials with RNAlater reagent (Thermo Fisher 
Scientific) and stored at −80°C until analysis. DNA extractions were carried out accord
ing to Alcorta et al. (100). Briefly, samples were immersed in xanthogenate buffer [1% 
potassium ethyl xanthogenate (Sigma-Aldrich, USA), 100 mM Tris-HCl (pH 7.4), 20 mM 
EDTA (pH 8), 800 mM ammonium acetate] and then mechanically shaken (TissueLyzer 
II, Qiagen) for 1 minute at 30 revolutions per second. Next, samples were incubated 
for 2 hours at 65°C with 10% SDS. After being mixed in a vortex, the samples were 
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immersed in ice for 30 minutes. DNA extraction was performed with phenol-chloro
form-isoamyl alcohol (25:24:1), while residual phenol was removed with chloroform-iso
amyl alcohol (25:1). Nucleic acid precipitation was carried out within 2 hours at −80°C 
with cold absolute isopropanol and 0.4 M ammonium acetate. The pellet was washed 
successively with 70% ethanol. The quality and quantity of the recovered nucleic 
acids were monitored using 1% agarose gel electrophoresis, Qubit (Life Technologies, 
Carlsbad, California, USA), and Nanodrop (Thermo Fisher Scientific, Waltham Massachu
setts, USA). Finally, universal primers 515F (5′-GTGYCAGCMGCCGCGGTAA-3′) and 926R 
(5′-CCGYCAATTYMTTTRAGTTT-3′) were used to amplify the V4-V5 hypervariable region 
of the 16S rRNA gene (101). Sequencing of the 22 samples was performed on the 
Illumina MiSeq platform (Argonne National Laboratory; Lemont, IL, USA). The 16S rRNA 
sequences of the 11 new samples at El Tatio (in duplicate) were submitted to the NCBI 
SRA database under the Bioproject accession number PRJNA825489.

Worldwide hot spring collection data

16S rRNA amplicon sequences from hot springs water (166) and mat (25) samples were 
retrieved from public databases along with their hydrochemical metadata. The data were 
obtained from studies where water and 16S rRNA amplicon sequences were sampled in 
the same field campaign as follows: the initial 758 16S rRNA amplicon samples found 
were reduced to 414 due to the large heterogeneity of sampling methods and measured 
variables. A minimum of 3 and a maximum of 25 sampling points per geothermal 
field were then imposed, randomly removing samples from sub- and over-represented 
geothermal systems. The final data set consisted of 191 terrestrial hot springs amplicon 
samples with their respective geographic location, temperature, pH, and concentrations 
of Ca2+, Mg2+, Na+, K+, Cl−, HCO3

−, SO4
2−, and SiO2. This data set belonged to three 

previous publications (16, 20, 73) that analyzed 13 geothermal fields (Table 1) distrib
uted over three zones in New Zealand (TVZ), the USA (YPVF), and China (ETPGB). 
Raw sequences were obtained from the SRA database of the NBCI. The YPVF and the 
ETPGB metadata were obtained from their respective articles, and the TVZ metadata was 
recovered from the One Thousand Spring project website (https://1000springs.org.nz/). 
HCO3

− concentrations for the YPVF samples were calculated with the USGS geochemical 
speciation code PHREEQC (102).

Taxonomic assignation

Each set of sequences was individually imported according to their local source into 
Qiime2 (103, 104) as demultiplexed sequences. Denoising and resolving the ASVs were 
performed with the DADA2 pipeline (105) yielding a total of 7,505,257 sequences after 
filtering (Table 1). At this stage, primers were also removed where necessary. Next, 
sequences were constrained to the V4 region of the 16S rRNA gene with the cutadapt 
tool, and then, taxonomic classification was assigned using the q2-feature-classifier (104) 
against the SILVA-138 99% Operational Taxonomic Unit reference sequences of the V4 
region. After removing the mitochondria and chloroplast sequences, a rooted phyloge
netic tree was constructed with fasttree2 (106). Counts of each ASV and associated 
taxonomic tables were exported for subsequent statistical and ecological analyses. For 
the samples that were in duplicates, those with the highest number of reads were chosen 
for these analyses.

Statistical and ecological analysis

An exploratory data analysis was performed on the hydrochemical variables of the 
13 geothermal systems. After scaling the data to zero mean and unit variance, Spear
man’s rank correlation coefficients between these variables were calculated (107). Next, 
dimensional reduction of the variables was obtained with PCA using the stats package 
(108).
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Sequence analyses were conducted in R with the packages phyloseq (109) and 
ampvis2 (110). Prior to alpha diversity analyses, rarefaction curves were constructed 
with the vegan package (111). Community alpha diversity for all samples was obtained 
using observed richness and Shannon index (112). These indices were grouped and 
displayed according to habitat (water or mat), study zone, and geothermal field. They 
were then tested for statistical significance using the Kruskal-Wallis test (113). Spearman’s 
correlation index between richness and hydrochemical variables was calculated for all 
samples and by study zone. The significant and highest correlations between chemical 
parameters and alpha diversity in each study zone were then plotted in two-component 
diagrams.

Prior to beta diversity analyses, read counts were normalized using the DESeq2 
package (114). An MDS was performed based on weighted Unifrac distances (115) 
which were then used in a PERMANOVA (116) using the adonis2 function of the vegan 
package with 9,999 permutations using observed richness, habitat (mat or water), and 
PCA eigenvectors as explanatory variables.

In addition, to assess the effect of hydrochemical gradients on selected taxa, 
Spearman’s correlation index was calculated between physicochemical parameters and 
taxa whose relative abundance in their study zone exceeded 0.1% at the phylum and 
family levels. Only taxa with significant correlations (P < 0.05) greater than 0.3 were 
selected and plotted on a heatmap. Then, microbial co-occurrence networks were 
performed per study zone with the Sparse Inverse Covariance Estimation for Ecological 
Association Inference method (117) and plotted with ggnet (118).

Finally, a distance decay analysis was conducted based on similarity/dissimilarity 
indexes: Jaccard (119), Bray-Curtis (120), unweighted Unifrac (121), and weighted Unifrac 
(115). Geodesic distances between samples were obtained through the geosphere 
package (122), and then, these distances were used to define spatial scales (local: 0–
58 km; regional: 58–279 km; global: 280–8,576 km). A linear regression on the logarith
mic scale was performed for the four indexes and the geodesic distances between 
samples at each of the three spatial scales, and then, their R2, P-value, and slope were 
used for further discussion.
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